1932

Abstract

The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032521-024017
2023-09-15
2024-06-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/77/1/annurev-micro-032521-024017.html?itemId=/content/journals/10.1146/annurev-micro-032521-024017&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrami L, Fivaz M, van der Goot FG. 2000. Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol 8:4168–72
    [Google Scholar]
  2. 2.
    Aggarwal BB. 2003. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3:9745–56
    [Google Scholar]
  3. 3.
    Akerley BJ, Cotter PA, Miller JF. 1995. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80:4611–20
    [Google Scholar]
  4. 4.
    Alexander-Floyd J, Bass AR, Harberts EM, Grubaugh D, Buxbaum JD et al. 2022. Lipid A variants activate human TLR4 and the noncanonical inflammasome differently and require the core oligosaccharide for inflammasome activation. Infect. Immun. 90:8e0020822
    [Google Scholar]
  5. 5.
    An J, Kim SH, Hwang D, Lee KE, Kim MJ et al. 2019. Caspase-4 disaggregates lipopolysaccharide micelles via LPS-CARD interaction. Sci. Rep. 9:826
    [Google Scholar]
  6. 6.
    Ashida H, Sasakawa C, Suzuki T. 2020. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J. 39:e104469
    [Google Scholar]
  7. 7.
    Aubert DF, Xu H, Yang J, Shi X, Gao W et al. 2016. A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation. Cell Host Microbe 19:664–74
    [Google Scholar]
  8. 8.
    Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, Macdonald K et al. 2009. NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183:787–91
    [Google Scholar]
  9. 9.
    Bauernfried S, Scherr MJ, Pichlmair A, Duderstadt KE, Hornung V. 2021. Human NLRP1 is a sensor for double-stranded RNA. Science 371:eabd0811
    [Google Scholar]
  10. 10.
    Beckwith KS, Beckwith MS, Ullmann S, Saetra RS, Kim H et al. 2020. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat. Commun. 11:2270
    [Google Scholar]
  11. 11.
    Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L et al. 2005. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92
    [Google Scholar]
  12. 12.
    Bernard EM, Broz P. 2022. Activation and manipulation of inflammasomes and pyroptosis during bacterial infections. Biochem. J. 479:867–82
    [Google Scholar]
  13. 13.
    Bierschenk D, Monteleone M, Moghaddas F, Baker PJ, Masters SL et al. 2019. The Salmonella pathogenicity island-2 subverts human NLRP3 and NLRC4 inflammasome responses. J. Leukoc. Biol. 105:401–10
    [Google Scholar]
  14. 14.
    Black DS, Bliska JB. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37:515–27
    [Google Scholar]
  15. 15.
    Boyden ED, Dietrich WF. 2006. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38:240–44
    [Google Scholar]
  16. 16.
    Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS et al. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:376–87
    [Google Scholar]
  17. 17.
    Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. 2010. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207:1745–55
    [Google Scholar]
  18. 18.
    Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. 2010. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–83
    [Google Scholar]
  19. 19.
    Cao S, Jiao Y, Jiang W, Wu Y, Qin S et al. 2022. Subversion of GBP-mediated host defense by E3 ligases acquired during Yersinia pestis evolution. Nat. Commun. 13:4526
    [Google Scholar]
  20. 20.
    Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y et al. 2012. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 5:288–98
    [Google Scholar]
  21. 21.
    Chai Q, Yu S, Zhong Y, Lu Z, Qiu C et al. 2022. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science 378:eabq0132
    [Google Scholar]
  22. 22.
    Chan AH, Vezyrgiannis K, Von Pein JB, Wang X, Labzin LI et al. 2023. Caspase-4 dimerisation and D289 auto-processing elicits an interleukin-1β converting enzyme. Preprint, bioRxiv. https://www.biorxiv.org/content/10.1101/2023.01.05.522955v1
  23. 23.
    Chavarria-Smith J, Vance RE. 2013. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLOS Pathog 9:e1003452
    [Google Scholar]
  24. 24.
    Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A et al. 2019. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J 38:10e101638
    [Google Scholar]
  25. 25.
    Chen KW, Demarco B, Ramos S, Heilig R, Goris M et al. 2021. RIPK1 activates distinct gasdermins in macrophages and neutrophils upon pathogen blockade of innate immune signaling. PNAS 118:28e2101189118
    [Google Scholar]
  26. 26.
    Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J et al. 2014. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8:570–82
    [Google Scholar]
  27. 27.
    Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR et al. 2019. N-terminal degradation activates the NLRP1B inflammasome. Science 364:82–85
    [Google Scholar]
  28. 28.
    Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P et al. 2016. The Yersinia virulence factor YopM hijacks host kinases to inhibit type III effector-triggered activation of the pyrin inflammasome. Cell Host Microbe 20:296–306
    [Google Scholar]
  29. 29.
    Craven RR, Gao X, Allen IC, Gris D, Wardenburg JB et al. 2009. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLOS ONE 4:e7446
    [Google Scholar]
  30. 30.
    Crowley SM, Han X, Allaire JM, Stahl M, Rauch I et al. 2020. Intestinal restriction of Salmonella Typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes. PLOS Pathog. 16:e1008498
    [Google Scholar]
  31. 31.
    Davis BK, Wen H, Ting JPY. 2011. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29:707–35
    [Google Scholar]
  32. 32.
    Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W et al. 2020. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6:47eabc3465
    [Google Scholar]
  33. 33.
    Dickinson MS, Kutsch M, Sistemich L, Hernandez D, Piro AS et al. 2023. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro. PNAS 120:15e2216028120
    [Google Scholar]
  34. 34.
    Doerflinger M, Deng Y, Whitney P, Salvamoser R, Engel S et al. 2020. Flexible usage and interconnectivity of diverse cell death pathways protect against intracellular infection. Immunity 53:533–47.e7
    [Google Scholar]
  35. 35.
    Dwivedy A, Ashraf A, Jha B, Kumar D, Agarwal N, Biswal BK. 2021. De novo histidine biosynthesis protects Mycobacterium tuberculosis from host IFN-gamma mediated histidine starvation. Commun. Biol. 4:410
    [Google Scholar]
  36. 36.
    Exconde PM, Hernandez-Chavez C, Bray MB, Lopez JL, Srivastava T et al. 2023. The tetrapeptide sequence of IL-1β regulates its recruitment and activation by inflammatory caspases. Preprint, bioRxiv. https://www.biorxiv.org/content/10.1101/2023.02.16.528859v1
  37. 37.
    Fajgenbaum DC, June CH. 2020. Cytokine storm. N. Engl. J. Med. 383:2255–73
    [Google Scholar]
  38. 38.
    Fattinger SA, Sellin ME, Hardt WD. 2021. Epithelial inflammasomes in the defense against Salmonella gut infection. Curr. Opin. Microbiol. 59:86–94
    [Google Scholar]
  39. 39.
    Faustin B, Lartigue L, Bruey J-M, Luciano F, Sergienko E et al. 2007. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25:713–24
    [Google Scholar]
  40. 40.
    Feng S, Enosi Tuipulotu D, Pandey A, Jing W, Shen C et al. 2022. Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat. Commun. 13:14395
    [Google Scholar]
  41. 41.
    Feoktistova M, Geserick P, Kellert B, Panaytova Dimitrova D, Langlais C et al. 2011. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43:449–63
    [Google Scholar]
  42. 42.
    Fink SL, Bergsbaken T, Cookson BT. 2008. Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. PNAS 105:4312–17
    [Google Scholar]
  43. 43.
    Fisch D, Clough B, Domart MC, Encheva V, Bando H et al. 2020. Human GBP1 differentially targets Salmonella and Toxoplasma to license recognition of microbial ligands and caspase-mediated death. Cell Rep 32:108008
    [Google Scholar]
  44. 44.
    Franchi L, Eigenbrod T, Nunez G. 2009. TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183:792–96
    [Google Scholar]
  45. 45.
    Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P et al. 2012. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13:449–56
    [Google Scholar]
  46. 46.
    Franchi L, Kanneganti T-D, Dubyak GR, Núñez G. 2007. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282:18810–18
    [Google Scholar]
  47. 47.
    Fritsch M, Gunther SD, Schwarzer R, Albert MC, Schorn F et al. 2019. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575:683–87
    [Google Scholar]
  48. 48.
    Gauthier AE, Chandler CE, Poli V, Gardner FM, Tekiau A et al. 2021. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci. Immunol. 6:57eabe0531
    [Google Scholar]
  49. 49.
    Goers L, Kim K, Stedman TC, Canning PJ, Mou X et al. 2023. Shigella IpaH9.8 limits GBP1-dependent LPS release from intracytosolic bacteria to suppress caspase-4 activation. PNAS 120:15e2218469120
    [Google Scholar]
  50. 50.
    Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M et al. 2012. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13:246–54
    [Google Scholar]
  51. 51.
    Ha HJ, Chun HL, Lee SY, Jeong JH, Kim YG, Park HH. 2021. Molecular basis of IRGB10 oligomerization and membrane association for pathogen membrane disruption. Commun. Biol. 4:92
    [Google Scholar]
  52. 52.
    Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–53
    [Google Scholar]
  53. 53.
    Hajjar AM, Ernst RK, Fortuno ES 3rd, Brasfield AS, Yam CS et al. 2012. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. PLOS Pathog 8:e1002963
    [Google Scholar]
  54. 54.
    Hajjar AM, Ernst RK, Tsai JH, Wilson CB, Miller SI. 2002. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat. Immunol. 3:354–59
    [Google Scholar]
  55. 55.
    Harberts EM, Grubaugh D, Akuma DC, Shin S, Ernst RK, Brodsky IE. 2022. Position-specific secondary acylation determines detection of lipid A by murine TLR4 and Caspase-11. Infect. Immun. 90:e0020122
    [Google Scholar]
  56. 56.
    Harder J, Franchi L, Muñoz-Planillo R, Park J-H, Reimer T, Núñez G. 2009. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-κB activation but proceeds independently of TLR signaling and P2X7 receptor. J. Immunol. 183:5823–29
    [Google Scholar]
  57. 57.
    Hausmann A, Bock D, Geiser P, Berthold DL, Fattinger SA et al. 2020. Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 13:530–44
    [Google Scholar]
  58. 58.
    Hausmann A, Russo G, Grossmann J, Zünd M, Schwank G et al. 2020. Germ-free and microbiota-associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cell. Microbiol. 22:6e13191
    [Google Scholar]
  59. 59.
    Hellmich KA, Levinsohn JL, Fattah R, Newman ZL, Maier N et al. 2012. Anthrax lethal factor cleaves mouse Nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLOS ONE 7:e49741
    [Google Scholar]
  60. 60.
    Henry T, Brotcke A, Weiss DS, Thompson LJ, Monack DM. 2007. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med. 204:987–94
    [Google Scholar]
  61. 61.
    Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ et al. 2012. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukoc. Biol. 92:1069–81
    [Google Scholar]
  62. 62.
    Huang S, Meng Q, Maminska A, MacMicking JD. 2019. Cell-autonomous immunity by IFN-induced GBPs in animals and plants. Curr. Opin. Immunol. 60:71–80
    [Google Scholar]
  63. 63.
    Iriarte M, Cornelis GR. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29:915–29
    [Google Scholar]
  64. 64.
    Janeway CA Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Part 11–13
    [Google Scholar]
  65. 65.
    Janeway CA, Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197–216
    [Google Scholar]
  66. 66.
    Jin T, Perry A, Jiang J, Smith P, Curry J et al. 2012. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–71
    [Google Scholar]
  67. 67.
    Jones JW, Kayagaki N, Broz P, Henry T, Newton K et al. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. PNAS 107:9771–76
    [Google Scholar]
  68. 68.
    Just I, Selzer J, Wilm M, Eichel-Streiber CV, Mann M, Aktories K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–3
    [Google Scholar]
  69. 69.
    Kagan JC, Magupalli VG, Wu H. 2014. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14:821–26
    [Google Scholar]
  70. 70.
    Kailasan Vanaja S, Rathinam VAK, Atianand MK, Kalantari P, Skehan B et al. 2014. Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome. PNAS 111:7765–70
    [Google Scholar]
  71. 71.
    Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J et al. 2008. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 181:5587–97
    [Google Scholar]
  72. 72.
    Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L et al. 2021. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184:149–68.e17
    [Google Scholar]
  73. 73.
    Karmakar M, Minns M, Greenberg EN, Diaz-Aponte J, Pestonjamasp K et al. 2020. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11:12212
    [Google Scholar]
  74. 74.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S et al. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:117–21
    [Google Scholar]
  75. 75.
    Klimpel KR, Arora N, Leppla SH. 1994. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol. Microbiol. 13:1093–100
    [Google Scholar]
  76. 76.
    Knodler L, Crowley S, Sham H, Yang H, Wrande M et al. 2014. Noncanonical inflammasome activation of Caspase-4/Caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16:249–56
    [Google Scholar]
  77. 77.
    Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M et al. 2013. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13:570–83
    [Google Scholar]
  78. 78.
    Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–95
    [Google Scholar]
  79. 79.
    Kovacs SB, Oh C, Maltez VI, McGlaughon BD, Verma A et al. 2020. Neutrophil caspase-11 is essential to defend against a cytosol-invasive bacterium. Cell Rep 32:107967
    [Google Scholar]
  80. 80.
    Kurane T, Matsunaga T, Ida T, Sawada K, Nishimura A et al. 2022. GRIM-19 is a target of mycobacterial Zn2+ metalloprotease 1 and indispensable for NLRP3 inflammasome activation. FASEB J. 36:e22096
    [Google Scholar]
  81. 81.
    Kutsch M, Coers J. 2021. Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 288:5826–49
    [Google Scholar]
  82. 82.
    Kutsch M, Sistemich L, Lesser CF, Goldberg MB, Herrmann C, Coers J. 2020. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J 39:e104926
    [Google Scholar]
  83. 83.
    Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A et al. 2018. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat. Commun. 9:242
    [Google Scholar]
  84. 84.
    Lee BL, Mirrashidi KM, Stowe IB, Kummerfeld SK, Watanabe C et al. 2018. ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci. Rep. 8:13788
    [Google Scholar]
  85. 85.
    Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti T-D. 2021. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597:415–19
    [Google Scholar]
  86. 86.
    Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA et al. 2012. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLOS Pathog 8:e1002638
    [Google Scholar]
  87. 87.
    Li P, Jiang W, Yu Q, Liu W, Zhou P et al. 2017. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 551:378–83
    [Google Scholar]
  88. 88.
    Li Y, Powell DA, Shaffer SA, Rasko DA, Pelletier MR et al. 2012. LPS remodeling is an evolved survival strategy for bacteria. PNAS 109:8716–21
    [Google Scholar]
  89. 89.
    Li Z, Liu W, Fu J, Cheng S, Xu Y et al. 2021. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature 599:7884290–95
    [Google Scholar]
  90. 90.
    Liao K-C, Mogridge J. 2013. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infection Immun. 81:570–79
    [Google Scholar]
  91. 91.
    Lin K-M, Hu W, Troutman TD, Jennings M, Brewer T et al. 2014. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. PNAS 111:775–80
    [Google Scholar]
  92. 92.
    Llibre A, Dedicoat M, Burel JG, Demangel C, O'Shea MK, Mauro C 2021. Host immune-metabolic adaptations upon mycobacterial infections and associated co-morbidities. Front. Immunol. 12:747387
    [Google Scholar]
  93. 93.
    Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM et al. 2021. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29:1521–30.e10
    [Google Scholar]
  94. 94.
    Man SM, Karki R, Sasai M, Place DE, Kesavardhana S et al. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase-11-NLRP3 inflammasomes. Cell 167:382–96.e17
    [Google Scholar]
  95. 95.
    Man SM, Place DE, Kuriakose T, Kanneganti TD. 2017. Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation. J. Leukoc. Biol. 101:143–50
    [Google Scholar]
  96. 96.
    Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA, Bryant CE. 2013. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production. J. Immunol. 191:5239–46
    [Google Scholar]
  97. 97.
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM et al. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–18
    [Google Scholar]
  98. 98.
    Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–32
    [Google Scholar]
  99. 99.
    Martinon F, Agostini L, Meylan E, Tschopp J. 2004. Identification of bacterial muramyl dipeptide as activator of the NALP3/Cryopyrin inflammasome. Curr. Biol. 14:1929–34
    [Google Scholar]
  100. 100.
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10:417–26
    [Google Scholar]
  101. 101.
    Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD et al. 2017. Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLOS Pathog 13:e1006502
    [Google Scholar]
  102. 102.
    Matusiak M, Van Opdenbosch N, Vande Walle L, Sirard J-C, Kanneganti T-D, Lamkanfi M 2015. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. PNAS 112:1541–46
    [Google Scholar]
  103. 103.
    McNeela EA, Burke Á, Neill DR, Baxter C, Fernandes VE et al. 2010. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLOS Pathog. 6:e1001191
    [Google Scholar]
  104. 104.
    Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D et al. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509:366–70
    [Google Scholar]
  105. 105.
    Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L et al. 2015. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16:476–84
    [Google Scholar]
  106. 106.
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG et al. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. PNAS 107:3076–80
    [Google Scholar]
  107. 107.
    Micheau O, Tschopp J. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–90
    [Google Scholar]
  108. 108.
    Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA et al. 2020. NAIP–NLRC4-deficient mice are susceptible to shigellosis. eLife 9:e59022
    [Google Scholar]
  109. 109.
    Mitchell PS, Sandstrom A, Vance RE. 2019. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr. Opin. Immunol. 60:37–45
    [Google Scholar]
  110. 110.
    Montminy SW, Khan N, McGrath S, Walkowicz MJ, Sharp F et al. 2006. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat. Immunol. 7:1066–73
    [Google Scholar]
  111. 111.
    Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG et al. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–53
    [Google Scholar]
  112. 112.
    Naseer N, Egan MS, Reyes Ruiz VM, Scott WP, Hunter EN et al. 2022. Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLOS Pathog. 18:e1009718
    [Google Scholar]
  113. 113.
    Naseer N, Zhang J, Bauer R, Constant DA, Nice TJ et al. 2022. Salmonella enterica serovar Typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent, Caspase-4-dependent inflammasome activation in human intestinal epithelial cells. Infect. Immun. 90:e0066321
    [Google Scholar]
  114. 114.
    Neiman-Zenevich J, Stuart S, Abdel-Nour M, Girardin SE, Mogridge J. 2017. Listeria monocytogenes and Shigella flexneri activate the NLRP1B inflammasome. Infect. Immun. 85:11e00338–17
    [Google Scholar]
  115. 115.
    Newson JPM, Scott NE, Yeuk Wah Chung I, Wong Fok Lung T, Giogha C et al. 2019. Salmonella effectors SseK1 and SseK3 target death domain proteins in the TNF and TRAIL signaling pathways. Mol. Cell. Proteom. 18:1138–56
    [Google Scholar]
  116. 116.
    Nogueira CV, Lindsten T, Jamieson AM, Case CL, Shin S et al. 2009. Rapid pathogen-induced apoptosis: a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLOS Pathog 5:6e1000478
    [Google Scholar]
  117. 117.
    Novem V, Shui G, Wang D, Bendt AK, Sim SH et al. 2009. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. Clin. Vaccine Immunol. 16:1420–28
    [Google Scholar]
  118. 118.
    Nozaki K, Li L, Miao EA. 2022. Innate sensors trigger regulated cell death to combat intracellular infection. Annu. Rev. Immunol. 40:469–98
    [Google Scholar]
  119. 119.
    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P et al. 2011. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471:363–67
    [Google Scholar]
  120. 120.
    Oberst A, Green DR. 2011. It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nat. Rev. Mol. Cell Biol. 12:757–63
    [Google Scholar]
  121. 121.
    Ogawa T, Asai Y, Sakai Y, Oikawa M, Fukase K et al. 2003. Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206–1. FEMS Immunol. Med. Microbiol. 36:1–7
    [Google Scholar]
  122. 122.
    Oh C, Verma A, Hafeez M, Hogland B, Aachoui Y 2021. Shigella OspC3 suppresses murine cytosolic LPS sensing. iScience 24:102910
    [Google Scholar]
  123. 123.
    Orning P, Weng D, Starheim K, Ratner D, Best Z et al. 2018. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:1064–69
    [Google Scholar]
  124. 124.
    Pajuelo D, Gonzalez-Juarbe N, Tak U, Sun J, Orihuela CJ, Niederweis M. 2018. NAD+ depletion triggers macrophage necroptosis, a cell death pathway exploited by Mycobacterium tuberculosis. Cell Rep 24:429–40
    [Google Scholar]
  125. 125.
    Park YH, Remmers EF, Lee W, Ombrello AK, Chung LK et al. 2020. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21:857–67
    [Google Scholar]
  126. 126.
    Pearson JS, Giogha C, Muhlen S, Nachbur U, Pham CL et al. 2017. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol. 2:16258
    [Google Scholar]
  127. 127.
    Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M et al. 2013. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501:247–51
    [Google Scholar]
  128. 128.
    Peng K, Broz P, Jones J, Joubert L-M, Monack D. 2011. Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cell. Microbiol. 13:1586–600
    [Google Scholar]
  129. 129.
    Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K et al. 2017. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J. Exp. Med. 214:3171–82
    [Google Scholar]
  130. 130.
    Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–89
    [Google Scholar]
  131. 131.
    Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA et al. 2014. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. PNAS 111:7385–90
    [Google Scholar]
  132. 132.
    Pierini R, Juruj C, Perret M, Jones CL, Mangeot P et al. 2012. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19:1709–21
    [Google Scholar]
  133. 133.
    Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D et al. 2014. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. PNAS 111:6046–51
    [Google Scholar]
  134. 134.
    Pilla-Moffett D, Barber MF, Taylor GA, Coers J. 2016. Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 428:3495–513
    [Google Scholar]
  135. 135.
    Place DE, Lee S, Kanneganti TD. 2021. PANoptosis in microbial infection. Curr. Opin. Microbiol. 59:42–49
    [Google Scholar]
  136. 136.
    Post DM, Phillips NJ, Shao JQ, Entz DD, Gibson BW, Apicella MA. 2002. Intracellular survival of Neisseria gonorrhoeae in male urethral epithelial cells: importance of a hexaacyl lipid A. Infect. Immun. 70:909–20
    [Google Scholar]
  137. 137.
    Pujol C, Bliska JB. 2003. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect. Immun. 71:5892–99
    [Google Scholar]
  138. 138.
    Rastogi S, Ellinwood S, Augenstreich J, Mayer-Barber KD, Briken V. 2021. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLOS Pathog 17:e1009712
    [Google Scholar]
  139. 139.
    Ratner D, Orning MP, Proulx MK, Wang D, Gavrilin MA et al. 2016. The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLOS Pathog 12:e1006035
    [Google Scholar]
  140. 140.
    Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL et al. 2017. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of Caspase-1 and -8. Immunity 46:649–59
    [Google Scholar]
  141. 141.
    Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ. 2004. Variation in lipid A structure in the pathogenic yersiniae. Mol. Microbiol. 52:1363–73
    [Google Scholar]
  142. 142.
    Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE. 2006. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLOS Pathog 2:e18
    [Google Scholar]
  143. 143.
    Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ et al. 2017. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. PNAS 114:13242–47
    [Google Scholar]
  144. 144.
    Richards N, Schaner P, Diaz A, Stuckey J, Shelden E et al. 2001. Interaction between pyrin and the Apoptotic Speck Protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem. 276:39320–29
    [Google Scholar]
  145. 145.
    Robinson KS, Teo DET, Tan KS, Toh GA, Ong HH et al. 2020. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370:6521eaay2002
    [Google Scholar]
  146. 146.
    Roncaioli JL, Babirye JP, Chavez RA, Liu FL, Turcotte EA et al. 2023. A hierarchy of cell death pathways confers layered resistance to shigellosis in mice. eLife 12:e83639
    [Google Scholar]
  147. 147.
    Ryu JC, Kim MJ, Kwon Y, Oh JH, Yoon SS et al. 2017. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol 10:757–74
    [Google Scholar]
  148. 148.
    Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA et al. 2013. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20:1149–60
    [Google Scholar]
  149. 149.
    Saini S, Slauch JM, Aldridge PD, Rao CV. 2010. Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J. Bacteriol. 192:5767–77
    [Google Scholar]
  150. 150.
    Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. 2019. Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364:eaau1330
    [Google Scholar]
  151. 151.
    Santoni K, Pericat D, Gorse L, Buyck J, Pinilla M et al. 2022. Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa. PLOS Pathog 18:e1010305
    [Google Scholar]
  152. 152.
    Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M et al. 2020. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11:3276
    [Google Scholar]
  153. 153.
    Santos JC, Broz P. 2018. Sensing of invading pathogens by GBPs: at the crossroads between cell-autonomous and innate immunity. J. Leukoc. Biol. 104:729–35
    [Google Scholar]
  154. 154.
    Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R et al. 2018. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. PNAS 115:E10888–97
    [Google Scholar]
  155. 155.
    Sauer JD, Pereyre S, Archer KA, Burke TP, Hanson B et al. 2011. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. PNAS 108:3012419–24
    [Google Scholar]
  156. 156.
    Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA. 2010. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7:412–19
    [Google Scholar]
  157. 157.
    Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. 2019. The Pyrin inflammasome in health and disease. Front. Immunol. 10:1745
    [Google Scholar]
  158. 158.
    Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R et al. 2017. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of Caspase-1 protease activity. Cell Rep. 21:3846–59
    [Google Scholar]
  159. 159.
    Sellin ME, Muller AA, Felmy B, Dolowschiak T, Diard M et al. 2014. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16:237–48
    [Google Scholar]
  160. 160.
    Semper RP, Vieth M, Gerhard M, Mejías-Luque R. 2019. Helicobacter pylori exploits the NLRC4 inflammasome to dampen host defenses. J. Immunol. 203:2183–93
    [Google Scholar]
  161. 161.
    Sha W, Mitoma H, Hanabuchi S, Bao M, Weng L et al. 2014. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. PNAS 111:16059–64
    [Google Scholar]
  162. 162.
    Shen A, Higgins DE. 2006. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLOS Pathog 2:4e30
    [Google Scholar]
  163. 163.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  164. 164.
    Sollberger G. 2022. Approaching neutrophil pyroptosis. J. Mol. Biol. 434:167335
    [Google Scholar]
  165. 165.
    Steimle A, Autenrieth IB, Frick JS. 2016. Structure and function: lipid A modifications in commensals and pathogens. Int. J. Med. Microbiol. 306:290–301
    [Google Scholar]
  166. 166.
    Stewart MK, Cummings LA, Johnson ML, Berezow AB, Cookson BT. 2011. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. PNAS 108:20742–47
    [Google Scholar]
  167. 167.
    Swanson KV, Deng M, Ting JPY. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:477–89
    [Google Scholar]
  168. 168.
    Tanishita Y, Sekiya H, Inohara N, Tsuchiya K, Mitsuyama M et al. 2022. Listeria toxin promotes phosphorylation of the inflammasome adaptor ASC through Lyn and Syk to exacerbate pathogen expansion. Cell Rep 38:110414
    [Google Scholar]
  169. 169.
    Tenev T, Bianchi K, Darding M, Broemer M, Langlais C et al. 2011. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43:432–48
    [Google Scholar]
  170. 170.
    Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V et al. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. PNAS 108:17480–85
    [Google Scholar]
  171. 171.
    Tourlomousis P, Wright JA, Bittante AS, Hopkins LJ, Webster SJ et al. 2020. Modifying bacterial flagellin to evade Nod-like Receptor CARD 4 recognition enhances protective immunity against Salmonella. Nat. Microbiol. 5:1588–97
    [Google Scholar]
  172. 172.
    Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD 2021. Diverse viral proteases activate the NLRP1 inflammasome. eLife 10:e60609
    [Google Scholar]
  173. 173.
    Valderrama JA, Riestra AM, Gao NJ, Larock CN, Gupta N et al. 2017. Group A streptococcal M protein activates the NLRP3 inflammasome. Nat. Microbiol. 2:1425–34
    [Google Scholar]
  174. 174.
    Van Valen L. 1973. A new evolutionary law. Evol. Theory 1:1–30
    [Google Scholar]
  175. 175.
    Wallach D, Kang T-B, Kovalenko A. 2014. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat. Rev. Immunol. 14:51–59
    [Google Scholar]
  176. 176.
    Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K et al. 2020. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat. Immunol. 21:880–91
    [Google Scholar]
  177. 177.
    Wandel MP, Pathe C, Werner EI, Ellison CJ, Boyle KB et al. 2017. GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9. 8: Cell Host Microbe 22:507–18.e5
    [Google Scholar]
  178. 178.
    Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al. 2015. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:799–810
    [Google Scholar]
  179. 179.
    Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI et al. 2014. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. PNAS 111:207391–96
    [Google Scholar]
  180. 180.
    Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–29
    [Google Scholar]
  181. 181.
    Wolfgang MC, Jyot J, Goodman AL, Ramphal R, Lory S. 2004. Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. PNAS 101:6664–68
    [Google Scholar]
  182. 182.
    Wu C, Lu W, Zhang Y, Zhang G, Shi X et al. 2019. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50:1401–11.e4
    [Google Scholar]
  183. 183.
    Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J et al. 2022. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55:1370–85.e8
    [Google Scholar]
  184. 184.
    Xu H, Yang J, Gao W, Li L, Li P et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–41
    [Google Scholar]
  185. 185.
    Yang J, Zhao Y, Shi J, Shao F. 2013. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. PNAS 110:14408–13
    [Google Scholar]
  186. 186.
    Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K. 2009. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–72
    [Google Scholar]
  187. 187.
    Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM et al. 2006. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat. Immunol. 7:318–25
    [Google Scholar]
  188. 188.
    Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J et al. 2016. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352:62901232–36
    [Google Scholar]
  189. 189.
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600
    [Google Scholar]
  190. 190.
    Zheng D, Liwinski T, Elinav E. 2020. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6:36
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032521-024017
Loading
/content/journals/10.1146/annurev-micro-032521-024017
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error