1932

Abstract

Spiral galaxies, including the Milky Way, have large-scale magnetic fields with significant energy densities. The dominant theory attributes these magnetic fields to a large-scale dynamo. We review the current status of dynamo theory and discuss various numerical simulations designed either to explain particular aspects of the problem or to reproduce galactic magnetic fields globally. Our main conclusions can be summarized as follows:

  • ▪  Idealized direct numerical simulations produce mean magnetic fields, whose saturation energy density tends to decline with increasing magnetic Reynolds number. This is still an unsolved problem.
  • ▪  Large-scale galactic magnetic fields of microgauss strengths can probably be explained only if helical magnetic fields of small or moderate length scales can be rapidly ejected or destroyed.
  • ▪  Small-scale dynamos are important throughout a galaxy's life and probably provide strong seed fields at early stages.
  • ▪  The circumgalactic medium (CGM) may play an important role in driving dynamo action at small and large length scales. These interactions between the galactic disk and the CGM may provide important insights into our understanding of galactic dynamos.

We expect future research in galactic dynamos to focus on the cosmological history of galaxies and the interaction with the CGM as means of replacing the idealized boundary conditions used in earlier work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-071221-052807
2023-08-18
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/astro/61/1/annurev-astro-071221-052807.html?itemId=/content/journals/10.1146/annurev-astro-071221-052807&mimeType=html&fmt=ahah

Literature Cited

  1. Ackermann M, Ajello M, Baldini L et al. 2018. Astrophys. J. Suppl. Ser. 237:232
  2. Alves Batista R, Saveliev A, de Gouveia Dal Pino EM 2019. MNRAS 489:33836–49
  3. Andrievsky A, Brandenburg A, Noullez A, Zheligovsky V. 2015. Ap. J. 811:135
  4. Arámburo-García A, Bondarenko K, Boyarsky A et al. 2021. MNRAS 505:45038–57
  5. Backus G. 1958. Ann. Phys. 4:4372–447
  6. Balbus SA, Hawley JF. 1991. Ap. J. 376:214
  7. Balsara DS, Kim J. 2004. Ap. J. 602:21079–90
  8. Baryshnikova I, Shukurov A, Ruzmaikin A, Sokoloff DD. 1987. Astron. Astrophys. 177:27–41
  9. Beck AM, Dolag K, Lesch H, Kronberg PP. 2013. MNRAS 435:43575–86
  10. Beck AM, Lesch H, Dolag K et al. 2012. MNRAS 422:32152–63
  11. Beck R. 2001. Space Sci. Rev. 99:243–60
  12. Beck R. 2012. Space Sci. Rev. 166:1–4215–30
  13. Beck R. 2015a. Astron. Astrophys. Rev. 24:4
  14. Beck R. 2015b. Astron. Astrophys. 578:A93
  15. Beck R, Berkhuijsen EM, Gießübel R, Mulcahy DD. 2020. Astron. Astrophys. 633:A5
  16. Beck R, Bomans D, Colafrancesco S et al. 2015. Structure, dynamical impact and origin of magnetic fields in nearby galaxies in the SKA era Paper presented at Advancing Astrophysics with the Square Kilometre Array Sicily, Italy: June 8–13
  17. Beck R, Brandenburg A, Moss D, Shukurov A, Sokoloff D. 1996. Annu. Rev. Astron. Astrophys. 34:155–206
  18. Beck R, Chamandy L, Elson E, Blackman EG. 2019. Galaxies 8:14
  19. Beck R, Poezd AD, Shukurov A, Sokoloff DD. 1994. Astron. Astrophys. 289:94–100
  20. Beck R, Wielebinski R 2013. Magnetic fields in galaxies. Planets, Stars and Stellar Systems, Vol. 5 Galactic Structure and Stellar Populations TD Oswalt, G Gilmore 641–723. Dordrecht, Neth: Springer Sci. Bus. Media
    [Google Scholar]
  21. Bendre AB, Subramanian K. 2022. MNRAS 511:34454–63
  22. Bennett CL, Larson D, Weiland JL et al. 2013. Ap. J. Suppl. 208:220
  23. Bernet ML, Miniati F, Lilly SJ, Kronberg PP, Dessauges-Zavadsky M. 2008. Nature 454:7202302–4
  24. Blackman EG, Brandenburg A. 2002. Ap. J. 579:1359–73
  25. Blackman EG, Field GB. 2000. Ap. J. 534:2984–88
  26. Borlaff AS, Lopez-Rodriguez E, Beck R et al. 2021. Ap. J. 921:2128
  27. Brackbill JU, Barnes DC. 1980. J. Comp. Phys. 35:3426–30
  28. Brandenburg A. 2000. Philos. Trans. R. Soc. A 358:759–74
  29. Brandenburg A. 2001. Ap. J. 550:2824–40
  30. Brandenburg A. 2005. Ap. J. 625:539–47
  31. Brandenburg A. 2010. MNRAS 401:1347–54
  32. Brandenburg A. 2018. J. Plasma Phys. 84:735840404
  33. Brandenburg A. 2019. MNRAS 487:2673–84
  34. Brandenburg A, Brüggen M. 2020. Ap. J. Lett. 896:L14
  35. Brandenburg A, Chatterjee P. 2018. Astron. Nachr. 339:118–26
  36. Brandenburg A, Chatterjee P, Del Sordo F et al. 2010. Phys. Scr. 142:014028
  37. Brandenburg A, Dobler W, Subramanian K. 2002. Astron. Nachr. 323:299–122
  38. Brandenburg A, Donner KJ, Moss D et al. 1992. Astron. Astrophys. 259:453–61
  39. Brandenburg A, Donner KJ, Moss D et al. 1993. Astron. Astrophys. 271:36–50
  40. Brandenburg A, Enqvist K, Olesen P. 1996. Phys. Rev. D 54:21291–300
  41. Brandenburg A, Kahniashvili T, Mandal S et al. 2019. Phys. Rev. F 4:024608
  42. Brandenburg A, Ntormousi E. 2022. MNRAS 513:22136–51
  43. Brandenburg A, Rädler KH, Rheinhardt M, Käpylä PJ. 2008a. Ap. J. 676:740–51
  44. Brandenburg A, Rädler KH, Rheinhardt M, Subramanian K. 2008b. Ap. J. Lett. 687:L49–52
  45. Brandenburg A, Rempel M. 2019. Ap. J. 879:57
  46. Brandenburg A, Scannapieco E. 2020. Ap. J. 889:155
  47. Brandenburg A, Sokoloff D. 2002. Geophys. Astrophys. Fluid Dyn. 96:4319–44
  48. Brandenburg A, Stepanov R. 2014. Ap. J. 786:91
  49. Brandenburg A, Subramanian K. 2005a. Phys. Rep. 417:1–209
  50. Brandenburg A, Subramanian K. 2005b. Astron. Nachr. 326:6400–8
  51. Brandenburg A, Tuominen I, Krause F. 1990. Geophys. Astrophys. Fluid Dyn. 50:195–112
  52. Brandenburg A, Zhou H, Sharma R. 2023. MNRAS 518:33312–25
  53. Brentjens MA, de Bruyn AG. 2005. Astron. Astrophys. 441:31217–28
  54. Broderick AE, Chang P, Pfrommer C. 2012. Ap. J. 752:122
  55. Burn BJ. 1966. MNRAS 133:67
  56. Carretti E, Vacca V, O'Sullivan SP et al. 2022. MNRAS 512:1945–59
  57. Cattaneo F, Hughes DW. 1996. Phys. Rev. E 54:5R4532–35
  58. Cattaneo F, Vainshtein SI. 1991. Ap. J. Lett. 376:L21
  59. Chamandy L, Shukurov A, Subramanian K. 2015. MNRAS 446:L6–10
  60. Chamandy L, Subramanian K, Shukurov A. 2013. MNRAS 428:3569–89
  61. Chandrasekhar S. 1956. Ap. J. 124:244
  62. Cowling TG. 1933. MNRAS 94:39–48
  63. Crutcher RM. 2012. Annu. Rev. Astron. Astrophys. 50:29–63
  64. Davis L Jr., Greenstein JL. 1951. Ap. J. 114:206
  65. Dayal P, Ferrara A. 2018. Phys. Rep. 780:1–64
  66. Dedner A, Kemm F, Kröner D et al. 2002. J. Comp. Phys. 175:2645–73
  67. Dekel A, Birnboim Y, Engel G et al. 2009. Nature 457:7228451–54
  68. Del Sordo F, Guerrero G, Brandenburg A. 2013. MNRAS 429:1686–94
  69. Devlen E, Brandenburg A, Mitra D. 2013. MNRAS 432:1651–57
  70. Dickey JM, West J, Thomson AJM et al. 2022. Ap. J. 940:175
  71. Donner KJ, Brandenburg A. 1990. Astron. Astrophys. 240:2289–98
  72. Draine BT. 2011. Physics of the Interstellar and Intergalactic Medium Princeton, NJ: Princeton Univ. Press
  73. Durrive JB, Langer M. 2015. MNRAS 453:1345–56
  74. Elstner D, Golla G, Rüdiger G, Wielebinski R. 1995. Astron. Astrophys. 297:77–82
  75. Elstner D, Meinel R, Rüdiger G. 1990. Geophys. Astrophys. Fluid Dyn. 50:185–94
  76. Evans CR, Hawley JF. 1988. Ap. J. 332:659
  77. Fabian AC. 2012. Annu. Rev. Astron. Astrophys. 50:455–89
  78. Federrath C, Sur S, Schleicher DRG, Banerjee R, Klessen RS. 2011. Ap. J. 731:162
  79. Ferrière K. 2020. Plasma Phys. Controlled Fusion 62:1014014
  80. Fletcher A, Berkhuijsen EM, Beck R, Shukurov A. 2004. Astron. Astrophys. 414:53–67
  81. Fujita T, Kamada K. 2016. Phys. Rev. D 93:8083520
  82. Galloway DJ, Proctor MRE. 1992. Nature 356:6371691–93
  83. Garaldi E, Pakmor R, Springel V. 2021. MNRAS 502:45726–44
  84. Gent FA, Mac Low M-M, Käpylä MJ, Singh NK 2021. Ap. J. Lett. 910:2L15
  85. Gent FA, Shukurov A, Sarson GR, Fletcher A, Mantere MJ. 2013. MNRAS 430:L40–44
  86. Girichidis P, Naab T, Walch S et al. 2016. Ap. J. Lett. 816:2L19
  87. Gnedin NY, Ferrara A, Zweibel EG. 2000. Ap. J. 539:2505–16
  88. Golla G, Hummel E. 1994. Astron. Astrophys. 284:777–92
  89. Grand RJJ, Gómez FA, Marinacci F et al. 2017. MNRAS 467:1179–207
  90. Grasso D, Rubinstein HR. 1995. Astropart. Phys. 3:195–102
  91. Gressel O, Bendre A, Elstner D. 2013. MNRAS 429:2967–72
  92. Gressel O, Elstner D. 2020. MNRAS 494:11180–88
  93. Gressel O, Elstner D, Ziegler U, Rüdiger G. 2008a. Astron. Astrophys. 486:3L35–38
  94. Gressel O, Ziegler U, Elstner D, Rüdiger G. 2008b. Astron. Nachr. 329:6619
  95. Gruzinov AV, Diamond PH. 1996. Phys. Plasmas 3:51853–57
  96. Hall JS. 1949. Science 109:2825166–67
  97. Han JL. 2017. Annu. Rev. Astron. Astrophys. 55:111–57
  98. Hanasz M, Lesch H, Naab T et al. 2013. Ap. J. Lett. 777:2L38
  99. Hennebelle P, Inutsuka S-i. 2019. Front. Astron. Space Sci. 6:5
  100. Henriksen RN, Woodfinden A, Irwin JA. 2018. MNRAS 476:1635–45
  101. Herzenberg A. 1958. Philos. Trans. R. Soc. A 250:986543–83
  102. Hiltner WA. 1949. Science 109:2825165
  103. Hollins JF, Sarson GR, Evirgen CC et al. 2022. Geophys. Astrophys. Fluid Dyn. 116:4261–89
  104. Horellou C, Fletcher A. 2014. MNRAS 441:32049–57
  105. Hosking DN, Schekochihin AA. 2021. Phys. Rev. X 11:4041005
  106. Hosking DN, Schekochihin AA. 2023. arXiv:2203.03573v3 [astro-ph.CO]
  107. Hutschenreuter S, Anderson CS, Betti S et al. 2022. Astron. Astrophys. 657:A43
  108. Jaffe TR, Leahy JP, Banday AJ et al. 2010. MNRAS 401:21013–28
  109. Jansson R, Farrar GR. 2012. Ap. J. 757:114
  110. Jedamzik K, Pogosian L. 2020.. Phys. Rev. Lett. 125:18181302
  111. Jedamzik K, Saveliev A. 2019. Phys. Rev. Lett. 123:2021301
  112. Ji H, Prager SC, Sarff JS. 1995. Phys. Rev. Lett. 74:152945–48
  113. Kahniashvili T, Clarke E, Stepp J, Brandenburg A. 2022. Phys. Rev. Lett. 128:22221301
  114. Kahniashvili T, Maravin Y, Natarajan A, Battaglia N, Tevzadze AG. 2013. Ap. J. 770:147
  115. Kamionkowski M, Kosowsky A, Stebbins A. 1997. Phys. Rev. Lett. 78:112058–61
  116. Katz H, Martin-Alvarez S, Devriendt J, Slyz A, Kimm T. 2019. MNRAS 484:22620–31
  117. Kazantsev AP. 1968. Sov. J. Exp. Theor. Phys. 26:1031
  118. Keinigs RK. 1983. Phys. Fluids 26:92558–60
  119. Kormendy J, Ho LC. 2013. Annu. Rev. Astron. Astrophys. 51:511–653
  120. Korochkin A, Kalashev O, Neronov A, Semikoz D. 2021. Ap. J. 906:2116
  121. Korpi MJ, Brandenburg A, Shukurov A, Tuominen I, Nordlund Å. 1999. Ap. J. Lett. 514:2L99–102
  122. Kotarba H, Karl SJ, Naab T et al. 2010. Ap. J. 716:21438–52
  123. Kraichnan RH. 1976. J. Fluid Mech. 75:657–76
  124. Krasheninnikova I, Shukurov A, Ruzmaikin A, Sokolov D. 1989. Astron. Astrophys. 213:19–28
  125. Krause F, Rädler KH. 1980. Mean-Field Magnetohydrodynamics and Dynamo Theory Oxford, UK: Pergamon Press
  126. Krause M, Beck R, Hummel E. 1989. Astron. Astrophys. 217:17–30
  127. Krause M, Irwin J, Schmidt P et al. 2020. Astron. Astrophys. 639:A112
  128. Krause M, Wielebinski R, Dumke M. 2006. Astron. Astrophys. 448:1133–42
  129. Kronberg PP, Perry JJ, Zukowski ELH. 1992. Ap. J. 387:528
  130. Kulsrud RM, Anderson SW. 1992. Ap. J. 396:606
  131. Kulsrud RM, Cen R, Ostriker JP, Ryu D. 1997. Ap. J. 480:2481–91
  132. Lopez-Rodriguez E, Clarke M, Shenoy S et al. 2022. Ap. J. 936:165
  133. Lowes FJ, Wilkinson I. 1963. Nature 198:48861158–60
  134. Mao SA, Carilli C, Gaensler BM et al. 2017. Nat. Astron. 1:621–26
  135. Marinacci F, Vogelsberger M. 2016. MNRAS 456:1L69–73
  136. Martin CL. 1998. Ap. J. 506:1222–52
  137. Martin-Alvarez S, Katz H, Sijacki D, Devriendt J, Slyz A. 2021. MNRAS 504:22517–34
  138. Martin-Alvarez S, Slyz A, Devriendt J, Gómez-Guijarro C. 2020. MNRAS 495:44475–95
  139. Mocz P, Pakmor R, Springel V et al. 2016. MNRAS 463:1477–88
  140. Moffatt HK, Proctor MRE. 1985. J. Fluid Mech. 154:493–507
  141. Mora-Partiarroyo SC, Krause M, Basu A et al. 2019. Astron. Astrophys. 632:A11
  142. Moss D. 1996. Astron. Astrophys. 315:63–70
  143. Moss D, Brandenburg A, Donner KJ, Thomasson M. 1993. Ap. J. 409:179
  144. Moss D, Sokoloff D. 2008. Astron. Astrophys. 487:1197–203
  145. Mtchedlidze S, Domínguez-Fernández P, Du X et al. 2022. Ap. J. 929:2127
  146. Naoz S, Narayan R. 2013. Phys. Rev. Lett. 111:5051303
  147. Natwariya PK, Bhatt JR. 2020. MNRAS 497:1L35–39
  148. Nelson D, Sharma P, Pillepich A et al. 2020. MNRAS 498:22391–414
  149. Neronov A, Vovk I. 2010. Science 328:73–75
  150. Ntormousi E, Del Sordo F, Cantiello M, Ferrara A 2022. Astron. Astrophys 668:L6
  151. Ntormousi E, Tassis K, Del Sordo F, Fragkoudi F, Pakmor R. 2020. Astron. Astrophys. 641:A165
  152. Ôki T, Fujimoto M, Hitotuyanagi Z. 1964. Prog. Theor. Phys. Suppl. 31:77–115
  153. Oppermann N, Junklewitz H, Greiner M et al. 2015. Astron. Astrophys. 575:A118
  154. Page L, Hinshaw G, Komatsu E et al. 2007. Ap. J. Suppl. 170:2335–76
  155. Pakmor R, Gómez FA, Grand RJJ et al. 2017. MNRAS 469:33185–99
  156. Parker EN. 1955. Ap. J. 122:293
  157. Parker EN. 1971. Ap. J. 163:255–78
  158. Parker EN. 1979. Cosmical Magnetic Fields: Their Origin and Their Activity Oxford, UK: Clarendon Press
  159. Parker EN. 1992. Ap. J. 401:137
  160. Pattle K, Fissel L, Tahani M, Liu T, Ntormousi E. 2022. arXiv:2203.11179 [astro-ph.GA]
  161. Piddington JH. 1964. MNRAS 128:345
  162. Piontek RA, Ostriker EC. 2007. Ap. J. 663:1183–203
  163. Poezd A, Shukurov A, Sokoloff D. 1993. MNRAS 264:285–97
  164. Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL. 1999. J. Comp. Phys. 154:2284–309
  165. Prasad A, Mangalam A. 2016. Ap. J. 817:112
  166. Putman ME, Peek JEG, Joung MR. 2012. Annu. Rev. Astron. Astrophys. 50:491–529
  167. Rädler K-H. 1969. Monats. Dt. Akad. Wiss. 11:194–201
  168. Rees MJ. 1987. Q. J. R. Astron. Soc. 28:197–206
  169. Rheinhardt M, Brandenburg A. 2012. Astron. Nachr. 333:71–77
  170. Rheinhardt M, Devlen E, Rädler KH, Brandenburg A. 2014. MNRAS 441:116–26
  171. Rieder M, Teyssier R. 2016. MNRAS 457:21722–38
  172. Rieder M, Teyssier R. 2017a. MNRAS 471:32674–86
  173. Rieder M, Teyssier R. 2017b.. MNRAS 472:44368–73
  174. Rincon F. 2021. Phys. Rev. Fluids 6:12L121701
  175. Roberts GO. 1972. Philos. Trans. R. Soc. A 271:1216411–54
  176. Rodenbeck K, Schleicher DRG. 2016. Astron. Astrophys. 593:A89
  177. Rodrigues LFS, Chamandy L, Shukurov A, Baugh CM, Taylor AR. 2019. MNRAS 483:22424–40
  178. Roettiger K, Stone JM, Burns JO. 1999. Ap. J. 518:2594–602
  179. Rosswog S, Price D. 2007. MNRAS 379:3915–31
  180. Ruzmaikin A, Shukurov A, Sokoloff D. 1988. Magnetic Fields of Galaxies Dordrecht, Neth: Kluwer
  181. Schekochihin AA, Cowley SC, Taylor SF, Maron JL, McWilliams JC. 2004. Ap. J. 612:1276–307
  182. Schober J, Schleicher D, Federrath C et al. 2012. Ap. J. 754:299
  183. Schoeffler KM, Loureiro NF, Fonseca RA, Silva LO. 2016. Phys. Plasmas 23:5056304
  184. Schrinner M, Rädler KH, Schmitt D, Rheinhardt M, Christensen U. 2005. Astron. Nachr. 326:245–49
  185. Schrinner M, Rädler KH, Schmitt D, Rheinhardt M, Christensen UR. 2007. Geophys. Astrophys. Fluid Dyn. 101:81–116
  186. Segalovitz A, Shane WW, de Bruyn AG. 1976. Nature 264:222–26
  187. Seljak U, Zaldarriaga M. 1997. Phys. Rev. Lett. 78:112054–57
  188. Seta A, Beck R. 2019. Galaxies 7:45
  189. Seta A, Bushby PJ, Shukurov A, Wood TS. 2020. Phys. Rev. Fluids 5:4043702
  190. Seta A, Federrath C. 2022. MNRAS 514:1957–76
  191. Shukurov A. 1998. MNRAS 299:1L21–24
  192. Shukurov A. 2000. Global magnetic structures in spiral galaxies: evidence for dynamo action. Proceedings 232, Interstellar Medium in M31 and M33 EM Berkhuijsen, R Beck, RAM Walterbos 191–200. Aachen, Ger.: Shaker Verlag
    [Google Scholar]
  193. Shukurov A, Rodrigues LFS, Bushby PJ, Hollins J, Rachen JP. 2019. Astron. Astrophys. 623:A113
  194. Shukurov A, Sokoloff D, Subramanian K, Brandenburg A. 2006. Astron. Astrophys. 448:L33–36
  195. Shukurov A, Subramanian K. 2022. Astrophysical Magnetic Fields: From Galaxies to the Early Universe Cambridge, UK: Cambridge Univ. Press
  196. Simard C, Charbonneau P, Dubé C. 2016. Adv. Space Res. 58:81522–37
  197. Sironi L, Giannios D. 2014. Ap. J. 787:149
  198. Snodin AP, Brandenburg A, Mee AJ, Shukurov A. 2006. MNRAS 373:643–52
  199. Sofue Y, Fujimoto M, Wielebinski R. 1986. Annu. Rev. Astron. Astrophys. 24:459–97
  200. Sokoloff D, Shukurov A. 1990. Nature 347:628851–53
  201. Soward AM. 1987. J. Fluid Mech. 180:267–95
  202. Squire J, Bhattacharjee A. 2015. Phys. Rev. Lett. 115:17175003
  203. Steenbeck M, Krause F. 1969. Astron. Nachr. 291:49–84
  204. Steenbeck M, Krause F, Rädler KH. 1966. Z. Naturforsch. A 21:369
  205. Stein Y, Dettmar RJ, Weżgowiec M et al. 2019. Astron. Astrophys. 632:A13
  206. Steinwandel UP, Beck MC, Arth A et al. 2019. MNRAS 483:11008–28
  207. Stix M. 1975. Astron. Astrophys. 42:185–89
  208. Subramanian K. 2016. Rep. Prog. Phys. 79:7076901
  209. Subramanian K, Brandenburg A. 2014. MNRAS 445:2930–40
  210. Subramanian K, Narasimha D, Chitre SM. 1994. MNRAS 271:L15
  211. Sun XH, Reich W, Waelkens A, Enßlin TA. 2008. Astron. Astrophys. 477:2573–92
  212. Sur S, Federrath C, Schleicher DRG, Banerjee R, Klessen RS. 2012. MNRAS 423:43148–62
  213. Sur S, Schleicher DRG, Banerjee R, Federrath C, Klessen RS. 2010. Ap. J. Lett. 721:2L134–38
  214. Tabatabaei FS, Krause M, Fletcher A, Beck R. 2008. Astron. Astrophys. 490:31005–17
  215. Tassis K, Ramaprakash AN, Readhead ACS et al. 2018. arXiv:1810.05652 [astro-ph.IM]
  216. Terral P, Ferrière K. 2017. Astron. Astrophys. 600:A29
  217. Tosa M, Fujimoto M. 1978. Publ. Astron. Soc. Jpn. 30:315–26
  218. Tricco TS, Price DJ, Federrath C. 2016. MNRAS 461:21260–75
  219. Tüllmann R, Dettmar RJ, Soida M, Urbanik M, Rossa J. 2000. Astron. Astrophys. 364:L36–41
  220. Vainshtein SI, Cattaneo F. 1992. Ap. J. 393:165
  221. Vainshtein SI, Ruzmaikin AA. 1971. Astron. Zhurnal 48:902
  222. van de Voort F, Bieri R, Pakmor R et al. 2021. MNRAS 501:44888–902
  223. Vazza F, Brüggen M, Gheller C et al. 2017. Class. Quantum Grav. 34:23234001
  224. Vazza F, Ferrari C, Brüggen M et al. 2015. Astron. Astrophys. 580:A119
  225. Veilleux S, Cecil G, Bland-Hawthorn J. 2005. Annu. Rev. Astron. Astrophys. 43:769–826
  226. Vishniac ET, Brandenburg A. 1997. Ap. J. 475:263–74
  227. Vishniac ET, Cho J. 2001. Ap. J. 550:2752–60
  228. Vishniac ET, Shapovalov D. 2014. Ap. J. 780:2144
  229. Volegova AA, Stepanov RA. 2010. Sov. J. Exp. Theor. Phys. Lett. 90:10637–41
  230. von Rekowski B, Brandenburg A, Dobler W, Dobler W, Shukurov A. 2003. Astron. Astrophys. 398:825–44
  231. Wang P, Abel T. 2009. Ap. J. 696:196–109
  232. Warnecke J, Rheinhardt M, Tuomisto S et al. 2018. Astron. Astrophys. 609:A51
  233. Weibel ES. 1959. Phys. Rev. Lett. 2:383–84
  234. West JL, Henriksen RN, Ferrière K et al. 2020. MNRAS 499:33673–89
  235. White SDM, Rees MJ. 1978. MNRAS 183:341–58
  236. Whittingham J, Sparre M, Pfrommer C, Pakmor R. 2021. MNRAS 506:1229–55
  237. Widrow LM. 2002. Rev. Mod. Phys. 74:3775–823
  238. Willis AP. 2012. Phys. Rev. Lett. 109:25251101
  239. Xu S, Garain SK, Balsara DS, Lazarian A. 2019. Ap. J. 872:162
  240. Xu S, Lazarian A. 2016. Ap. J. 833:2215
  241. Xu S, Lazarian A. 2020. Ap. J. 899:2115
  242. Xu S, Lazarian A. 2021. Rev. Mod. Plasma Phys. 5:12
  243. Yousef TA, Heinemann T, Schekochihin AA et al. 2008. Phys. Rev. Lett. 100:184501
  244. Zeldovich YB, Ruzmaikin AA, Sokoloff DD. 1990. The Almighty Chance Singapore: World Sci. Publ.
  245. Zhang D. 2018. Galaxies 6:4114
  246. Zhou H, Blackman EG. 2021. MNRAS 507:45732–46
  247. Zhou H, Blackman EG, Chamandy L. 2018. J. Plasma Phys. 84:3735840302
/content/journals/10.1146/annurev-astro-071221-052807
Loading
/content/journals/10.1146/annurev-astro-071221-052807
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error